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Abstract In this note, we establish the strong convergence for the Ishikawa iterative scheme with errors
associated with Lipschitzian pseudocontractive mappings in Hilbert spaces.
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INTRODUCTION
Let H be a Hilbert space. A mapping HHT : is said
to be pseudocontractive (see for example, [1, 2]) if
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and is said to be strongly pseudocontractive if there exists

(0,1)k such that
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Let }=:{:=)( xTxHxTF  and let K be a nonempty

subset of H . A mapping KKT : is called

hemicontractive if )(TF and
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It is easy to see that the class of pseudocontractive mappings
with fixed points is a subclass of the class of
hemicontractions. The following example, due to Rhoades
[6], shows that the inclusion is proper. For 0,1]x , define

0,1][0,1]: T by 2

3
3

2

)(1= xTx  . It is shown in [6]

that T is not Lipschitz and so cannot be nonexpansive. A
straightforward computation (see for example, [7]) shows
that T is pseudocontractive. For the importance of fixed
points of pseudocontractions the reader may consult [1].
In 1974, Ishikawa [4] proved the following result:
Theorem 1 If K is a compact convex subset of a Hilbert
space H , KKT : is a Lipschitzian pseudocontractive

map and 0x is any point in K , then the sequence }{ nx

converges strongly to a fixed point of T , where nx is

defined iteratively for each positive integer 1n by

,)(1=1 nnnnn Tyxx   (1.3)
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where }{},{ nn  are sequences of positive numbers

satisfying the conditions
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(1.4)
Another iteration scheme which has been studied extensively
in connection with fixed points of pseudocontractive

mappings is the following: For K a convex subset of a

Banach space E , and KKT : , the sequence }{ nx is

defined iteratively by Kx 1 ,

1,,)(1=1  nTxcxcx nnnnn (1.5)

where }{ nc is a real sequence satisfying the following

conditions:
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The iteration scheme (1.5) is generally referred to as the
Mann iteration process in light of [5].
In 1997, Xu [8] introduced the following iteration scheme:
Let K be a nonempty convex subset of a Banch space E
and KKT : a mapping. For any given Kx 1 , the

sequence }{ nx defined iteratively by

,=1 nnnnnnn ucTybxax  (1.7)
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where }{},{ nn vu are bounded sequences in K and

}{},{},{},{},{
'

n

'

nnnn bacba and }{
'

nc are sequences in

[0,1] such that 1==
'

n

'

n

'

nnnn cbacba  for all

1n is called the Ishikawa iteration sequence with errors
in the sense of Xu.
If, with the same notations and definitions as in (1.7),

0==
'

n

'

n cb , for all integers 1n , then the sequence

}{ nx now defined by

,1 Kx  (1.8)

1,,=1  nucTxbxax nnnnnnn

is called the Mann iteration scheme with errors in the sense
of Xu.
We remark that if K is bounded (as is generally the case),

the error terms nn vu , are arbitrary in K .

In [3], Chidume and Chika Moore generalized the results of
Ishikawa for continuous pseudocontractions and proved the
following results.
Theorem 2 3] Let K be a compact convex subset of a real
Hilbert space H ; KKT : a continuous

hemicontractive mapping. Let }{},{},{},{},{
'

n
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and }{
'

nc be real sequences in [0,1] satisfying the

following conditions:
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(v) wherennn 1,1<0  
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For arbitrary ,1 Kx  define the sequence }{ nx iteratively

by

,=1 nnnnnnn ucTybxax 
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where }{},{ nn vu are arbitrary sequences in K . Then,

}{ nx converges strongly to a fixed point of T .

Remark 1 For the proof of Theorem 2, Chidume and Moore

used the condition .<
2  nnnn TyTx Since K is

compact, so for some constant 0,'M we obtain

.=
2  nnnn TyTx Hence the problem is still open.

In this paper, we establish the strong convergence for the
Ishikawa iterative scheme with errors associated with
Lipschitzian pseudocontractive mappings in Hilbert spaces.
Preliminaries
We shall make use of the following well known results.

Lemma 1 8] Suppose that }{},{ nn  are two sequences

of nonnegative numbers such that for some real number

10 N ,

.01 Nnnnn  

(a) If ,<  n then, nlim exists.

(b) If  <n and }{ n has a subsequence converging

to zero, then 0=lim n .

Lemma 2 10] For all ,x Hy and 0,1] , the

following well-known identity [17] holds:

.||||)(1||||||||)(1=||)(1|| 2222 yxyxyx  
Lemma 3 Let H be a Hilbert space, then for all

Hzyx ,,
22222

= yxabzcybxaczbyax 

,
22
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where 0,1],, cba and 1.=cba 

Main Results
Now we prove our main results.
Theorem 3 Let K be a compact convex subset of a real
Hilbert space H ; KKT : a Lipschitzian
hemicontractive mapping satisfying

.,allfor KyxTyTxTyx  (C)
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sequences in [0,1] satisfying the following conditions:
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For arbitrary ,1 Kx  define the sequence }{ nx iteratively

by

,=1 nnnnnnn ucTybxax 

1,,=  nvcTxbxay n

'
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'

nn

'

nn

where }{},{ nn vu are arbitrary sequences in K . Then

}{ nx converges strongly to a fixed point of T .

Proof. From Schauder’s fixed point theorem, )(TF is

nonempty (where )(TF denotes the set of fixed points of

T ) since K is a convex compact set and T is continuous,

let )(TFx  . Set )(1= KdiamM  . Using the fact

that T is hemicontractive we obtain

,222  nnnn TxxxxxTx   (3.1)

and

.222  nnnn TyyxyxTy   (3.2)

With the help of (1.7), (3.1), (3.2) and Lemma 3, we obtain
the following estimates:
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Substituting (3.3) and (3.4) in (3.2) we obtain
2222

nn
'
nnn

'
nnn TyTxbTyxaxxxTy  

(3.5)
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Also with the help of (3.5), we have
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and since T is Lipschitzian,
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and from (3.7) we get
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Hence by conditions (ii) and (iii), we have
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It implies that

0.=lim nn
n

Txx 


The rest of the argument follows exactly as in the proof of
Theorem 1 of [3] and the proof is complete.
Theorem 4 Let K be a compact convex subset of a real
Hilbert space H ; KKT : a continuous
hemicontractive mapping satisfying
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Let }{},{},{},{},{
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'

nc be real

sequences in [0,1] satisfying the following conditions:
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Let KHPK : be the projection operator of H onto

K . Then the sequence }{ nx defined iteratively by

 ,=1 nnnnnnKn ucTybxaPx 
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where }{ nu and }{ nu are arbitrary sequences in ,K

converges strongly to a fixed point of T .

Proof. The operator KP is nonexpansive (see e.g., [2]). K

is a Chebyshev subset of H so that, KP is a single-valued

mapping. Hence, we have the following estimate:
22
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The set )(= KTKK  is compact and so the sequence

}{  nn Txx  is bounded. The rest of the argument follows

exactly as in the proof of Theorem 3 and the proof is
complete.
Remark 2 This kind of reconstruction for Lipschitz
hemicontractive mappings is new under the setting of
Hilbert spaces.
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